TD VITESSES EN CINETIQUE CHIMIQUE

Donnée : $R = 8,314J.K^{-1}.mol^{-1}$.

Exercice 1: Loi d'Arrhenius

On détermine à plusieurs températures la constante de vitesse de la réaction de formation du méthoxyéthane selon : $CH_3I + C_2H_5O^- \rightarrow C_2H_5OCH_3 + I^-$

Température(°C)	0,0	6,0	12	18	24	30
Constante de vitesse $k \times 10^5 (mol.L^{-1}.s^{-1})$	5,60	11,8	24,5	48,8	100	208

- 1) Quelle courbe faut-il tracer pour vérifier que la réaction suit la loi d'Arrhenius ?
- 2) En effectuant une régression linéaire de la courbe (modélisation de la courbe expérimentale obtenue par une fonction affine du type Y=aX+b) on trouve un coefficient de corrélation proche de l'unité (0,9996 en valeur absolue), a= -9924 Kelvins et b=26,51.

Calculer la valeur de l'énergie d'activation E_a et le facteur de fréquence A de cette réaction (prendre garde aux unités).

- 3) Déterminer la constante de vitesse à 40°C.
- 4) Exprimer la vitesse de la réaction (volumique) en fonction des concentrations des réactifs et produits.
- 5) D'après l'unité de la constante de vitesse, si la réaction admet un ordre que vaut-il ?

Exercice 2 : Ordre simple

- On considère la réaction A → B+C que l'on supposera d'ordre simple.
 Quel est l'ordre n de cette réaction, si le temps de demi-réaction est divisé par 3 lorsque la concentration initiale en réactif A est triplée.
- 2) A la température T=293K, on envisage la nouvelle réaction $2A\to B+C$, que l'on suppose d'ordre 2. La concentration en A vaut $a_o=0,20mol.L^{-1}$ à l'instant t=0. Au temps $t_1=30mn$, 20 % du réactif A a disparu. Calculer la constante de vitesse k à la température de l'expérience ainsi que le temps de demiréaction $t_{1/2}$.
- 3) Que deviennent respectivement k et $t_{1/2}$ si l'on divise la concentration initiale en réactif A par 2 ?
- 4) L'expérience étant réalisée à la température T'=373K, la constante de vitesse augmente et prend pour nouvelle valeur $k'=0,10L.mol^{-1}.min^{-1}$. Calculer l'énergie d'activation E_a de la réaction.
- 5) A quelle température T'' faut-il réaliser l'expérience pour que la vitesse de la réaction soit multipliée par 10 (on prendra comme référence T' = 373K)?

Exercice 3 : Dégénérescence de l'ordre

On étudie la réaction suivante : $(CH_3)_3CBr + H_2O \rightarrow (CH_3)_3COH + HBr$

A 25°C, on obtient les résultats suivants :

Temps	0	2	4	8	12	20	30	40
(en h)								
$[(CH_3)_3CBr]$	0,1	0,09	0,08	0,07	0,05	0,03	0,02	0,01
(en mol/L)								

- 1) Décrire la démarche à suivre pour vérifier que ces résultats sont compatibles avec une cinétique du premier ordre par rapport au 2-bromo-2-méthylpropane.
- 2) A l'aide de la démarche précédente on obtient une constante de vitesse apparente dont la valeur numérique vaut 0,06. Quelle est son unité (en utilisant les unités du tableau) ?
- 3) Dans les mêmes conditions mais à 50°C, le temps de demi-réaction est de 56 minutes. Calculer la constante de vitesse apparente à cette température.
- 4) En déduire l'énergie d'activation Ea.

Exercice 4 : Saponification de l'éthanoate d'éthyle

On étudie la saponification de l'éthanoate d'éthyle par de la soude :

$$CH_3CO_2C_2H_5 + OH^- \to CH_3CO_2^- + C_2H_5OH$$

La réaction est du premier ordre par rapport à chacun des réactifs et la concentration initiale de chacun d'eux est de $C_o = 0.2 mol.L^{-1}$. On note C la concentration de l'éthanoate d'éthyle à l'instant t.

- 1) Etablir la loi de variation de C en fonction de t.
- 2) Après $t_1=25\,$ minutes de réaction on effectue un prélèvement de $100cm^3$; les ions OH^- sont dosés par une solution d'acide fort à $0,125mol.L^{-1}$. A l'équivalence le volume d'acide versé est $V_{eq1}=4,23cm^3$. On note C_1 la valeur de C_1 à l'instant C_2 la valeur de C_3 minutes de réaction. On note C_4 la valeur de C_3 à l'instant C_4 minutes de réaction. On note C_4 la valeur de C_4 à l'instant C_4 minutes de réaction.
- a) Exprimer C_2 en fonction de C_o , C_1 , t_1 et t_2 .
- b) Quel le volume d'acide versé à l'équivalence $V_{\it eq2}$?